Apply Fine-Grain Adaptive Multithreading to Irregular Applications

Guang R. Gao
Computer Arch. and Parallel System Laboratory
University of Delaware

(www.capsl.udel.edu)

Outline

- Introduction: Class-A and Class-B Applications
- Fine-Grain Multithreading A Clarification
- EARTH and Beyond: A Case Study of Fine-Grain Multithreading (*EARTH-MANNA*)
- Examples of Irregular Applications
- Blue-G/L and Fine-Grain Multithreading
- Summary

The "Memory-Wall" Problem

Performance

What is a Class B Application?

- Data dependence: irregular/dynamic
- Data access pattern: irregular/dynamic
- Control flow: irregular/dynamic
- Computation load evolution: irregular/dynamic
- Others?

Memory Wall: 4 Types of Latencies

- Memory access/communication latency
- Synchronization latency
- Task spaning/termination latency
- Task migration latency
- Others?

Research Layout

Future Programming Model and System Software

Coarse-Grain thread-The family home model

Fine-Grain thread-The "hotel" model

Coarse-Grain vs. Fine-Grain Multithreading

8/14/2002 Bluegene-08-2002 7

EARTH: a Fine-Grain Multithreaded Execution Model

Two Level of Fine-Grain Threads:

- threaded procedures
- fibers

- fiber within a frame
- Parallel function invocation
- A sync operation
- → Invoke a threaded func

Fiber States Transition

The EARTH Virtual Machine Model

- EARTH node consists of an Execution Unit and a Synchronization Unit (SU)
- EU executes active threads
- SU handles synchronization and scheduling of threads, and communication

• Ready queue, event queue, and token queue

The *Threaded-C* Language – Defining the API for EARTH Virtual Machine

• Threaded C = ANSI C + extensions for multithreading

- Extensions include:
 - Threaded functions
 - Threaded synchronization
 - Support for global address space
 - Data transfer primitives
- Threaded-C is:
 - The "instruction set" of the EARTH PXM
 - A target language for high-level compilers

The Fibonacci Example in Threaded-C

8/14/2002 Bluegene-08-2002 12

Features of Fine-Grain Threaded Programming

Latency tolerance and management

- Thread formation
 - Thread length vs useful parallelism
 - Where to "cut"?
- Split-phase synchronization and communication
- Parallel threaded function invocation
- Dynamic load balancing
- Other advanced features

The EARTH Operation Set

- The base operations
- Thread synchronization and scheduling ops SPAWN, SYNC
- Split-phase data & sync ops
 GET_SYNC, DATA_SYNC
- Threaded function invocation and load balancing ops

INVOKE, TOKEN

EARTH-C and Threaded-C

- Design simple high-level extensions for C that allow programmers to write programs that will run efficiently on multi-threaded architectures.

 (EARTH-C)
- Develop compiler techniques to automatically translate programs written in EARTH-C to multithreaded programs. (EARTH-C, Threaded-C)
- Determine if EARTH-C + compiler can compete with hand-coded Threaded-C programs.

An Evolutionary Path for EARTH

The EARTH-MANNA Multiprocessor Testbed

- no "traditional OS
- EARTH runtime system management the CPs
- system calls are handled by host nodes

- for users: the entire CPs are viewed as a single compute engine

- asyncronous events and the "polling-watchdog"

The cache cohernence between the two CPs affects the performance of the

EARTH RTS

cluster cluster cluster cluster cluster cluster cluster Crossbarcluster cluster Hierarchies cluster cluster cluster cluster cluster cluster cluster Cluster (Node) Node Crossbar Local Memory

8/14/2002

Bluegene-08-2002

Performance Study Platform #1 – EARTH on Chiba City Cluster

DOE/ANL Chiba City Cluster

- 256 dual-CPU Pentium III 500 MHz Computing Nodes with 512 MB of RAM and 9G of local disk.
- Switched Fast Ethernet for file service and management functionality connecting all computing nodes.

-08-2002

Open64/Kylin Compiler Infrastructure

Performance Evaluation Through Multiple Methods

- Bottleneck Analysis (selected computation kernels)
- Simulation (e.g. SEMi and Its Extensions)
- Emulation (e.g. EARTH-Cluster style)
- Analytical Performane Model (e.g. *Numarwarkar97*, etc.)
- A Judiciary combination of the above

Important Benchmarks Studied

- Example 1: Gannon's algorithm for paralle matrix multiply (Theobald99)
- Example 2: Adaptive unstructured grids (IPDPS99, Irregular99, Thulasiram00)
- Example 3: Wavelet computation (IPDPS99,Thulasiram00)
- Example 4: FFT computation (SPAA00, Thulasiram00)
- Example 5: Conjugate Gradiant (CG) Code (EuroPar00, SC00)
- Example 6: Genome/Protein Sequence Comparison (Smith-Waterman/Needleman-Wunch Alg.) (PSB00,RECOMB01)
- Others (e.g. EBS benchmarks)

Performance of N-Queens(12)

- Achieved high absolute efficient under EARTH-MANNA: 117.8 fold speedup on a 120 node Machine!
- 1,637,099 tokens are generated!
- average, 30+ tokens are maintained per processors
- Fine-grain two-level multithreading

Case Study: Conjugate Gradient

- Dominant part is repeated sparse matrix-vector multiply
- Sequential section insignificant
- Inner products and scaling must be efficient

8/14/2002 Bluegene-08-2002 23

Implementation in Threaded-C

Two independent copies of this structure

Global Reduction & Broadcast

8/14/2002 Bluegene-08-2002 25

CG: Observations

- CG mapped very efficiently under EARTH achieve > 75% absolute efficiency on EARTH-MANNA
- Fine-grain multithreading and synchronization methods play a significant role in achieving this performance.

An Advanced Program Execution Model

- The *Percolation* Model: A *dynamic and adaptive* parallel execution model
- The Location Consistency Memory Model:

 A fully distributed memory consistency model (see IEEE Transaction on Computers, Aug. 2000)

EARTH on Bluegene/L – some thoughts

- EARTH appears to be an interesting addition to the current Bluegene/L programming models
- EARTH Virtual Machine should be able to be mapped efficiently onto the current Bluegene/L dual-processor node architecture (do not need the L1 coherence)
- Other research topics enabled by EARTH on BG//L

Acknowledgements

- NSF: the NGS program (D. Frederica)
- DOE: SciDAC P-Model Center (F. Johnson, PI: R. Lusk)
- Other funding sources
- Members of CAPSL
- Our collaborators